123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- from google.cloud import bigquery
- import logging
- def bqCreateDataset(bq_client, dataset_name):
- """
- Creates a dataset on Google Cloud Platform.
- Args:
- dataset_name: str - Name of the dataset
- Returns:
- dataset_id: str - Reference id for the dataset just created
- """
- dataset_ref = bq_client.dataset(dataset_name)
- try:
- dataset_id = bq_client.get_dataset(dataset_ref).dataset_id
- logging.warning('This dataset name: {} is already used.'.format(dataset_id))
- return dataset_id
- except:
- dataset = bigquery.Dataset(dataset_ref)
- dataset = bq_client.create_dataset(dataset)
- logging.info('Dataset {} created.'.format(dataset.dataset_id))
- return dataset.dataset_id
- def bqCreateTable(bq_client, dataset_id, table_name):
- """
- Create main table with all cases and the medical text.
- Args:
- dataset_id: str - Reference id for the dataset to use
- table_name: str - Name of the table to create
- Returns:
- table_id: str - Reference id for the table just created
- """
- dataset_ref = bq_client.dataset(dataset_id)
- # Prepares a reference to the table
- table_ref = dataset_ref.table(table_name)
- try:
- return bq_client.get_table(table_ref).table_id
- except:
- schema = [
- bigquery.SchemaField('case', 'STRING', mode='REQUIRED'),
- bigquery.SchemaField('it_raw_txt', 'STRING', mode='REQUIRED'),
- bigquery.SchemaField('eng_raw_txt', 'STRING', mode='REQUIRED'),
- bigquery.SchemaField('eng_txt', 'STRING', mode='REQUIRED',
- description='Output of preprocessing pipeline.')]
- table = bigquery.Table(table_ref, schema=schema)
- table = bq_client.create_table(table)
- logging.info('table {} has been created.'.format(table.table_id))
- return table.table_id
- def exportItems2BQ(bq_client, dataset_id, table_id, case, it_raw_blob, eng_raw_blob, curated_eng_blob):
- """
- Export text data to BigQuery.
- Args:
- dataset_id:
- table_id:
- case:
- it_raw_blob:
- eng_raw_blob:
- curated_eng_blob:
- Returns:
- """
- # Prepares a reference to the dataset
- dataset_ref = bq_client.dataset(dataset_id)
- table_ref = dataset_ref.table(table_id)
- table = bq_client.get_table(table_ref) # API call
- # Download text from GCS
- it_raw_txt_string = it_raw_blob.download_as_string().decode('utf-8')
- eng_raw_txt_string = eng_raw_blob.download_as_string().decode('utf-8')
- curated_eng_string = curated_eng_blob.download_as_string().decode('utf-8')
- rows_to_insert = [{'case': case,
- 'it_raw_txt': it_raw_txt_string,
- 'eng_raw_txt': eng_raw_txt_string,
- 'eng_txt': curated_eng_string
- }]
- errors = bq_client.insert_rows(table, rows_to_insert) # API request
- assert errors == []
- logging.info('{} was added to {} dataset, specifically in {} table.'.format(case,
- dataset_id,
- table_id))
- def returnQueryResults(bq_client, project_id, dataset_id, table_id, case_id):
- """
- Get results from a BigQuery query.
- Args:
- bq_client:
- project_id:
- dataset_id:
- table_id:
- case_id:
- Returns:
- """
- query = ('SELECT * FROM `{}.{}.{}` WHERE `case`="{}" LIMIT 1'.format(project_id, dataset_id, table_id, case_id))
- try:
- query_job = bq_client.query(query)
- is_exist = len(list(query_job.result())) >= 1
- logging.info('Query case id: {}'.format(case_id) if is_exist \
- else "Case id: {} does NOT exist".format(case_id))
- logging.info(list(query_job.result()))
- except Exception as e:
- logging.error("Error", e)
|