from google.cloud import storage, bigquery, datastore from google.oauth2 import service_account from utils.bq_fcn import bqCreateDataset, bqCreateTable, exportItems2BQ from utils.ner_fcn import loadModel, addTask, extractMedEntities import logging logging.getLogger().setLevel(logging.INFO) try: import en_core_sci_sm except: logging.warning("404: en_core_sci_sm NOT FOUND. Make sure the model was downloaded and installed.") try: import en_core_sci_lg except: logging.warning("404: en_core_sci_lg NOT FOUND. Make sure the model was downloaded and installed.") try: import en_ner_bionlp13cg_md except: logging.warning("404: en_ner_bionlp13cg_md NOT FOUND. Make sure the model was downloaded and installed.") import time import os import pandas as pd project_id = os.getenv('PROJECT_ID') bucket_name = os.getenv('BUCKET_NAME') location = os.getenv('LOCATION') key_path = os.getenv('SA_KEY_PATH') dataset_name = os.getenv('BQ_DATASET_NAME') table_name = os.getenv('BQ_TABLE_NAME') credentials = service_account.Credentials.from_service_account_file(key_path) storage_client = storage.Client(credentials=credentials) datastore_client = datastore.Client(credentials=credentials) bq_client = bigquery.Client(credentials=credentials) gcs_source_prefix = 'raw_txt' lst_blobs = storage_client.list_blobs(bucket_or_name=bucket_name, prefix=gcs_source_prefix) start_time = time.time() try: dataset_id = bqCreateDataset(bq_client, dataset_name) logging.info("The following dataset {} was successfully created/retrieved.".format(dataset_name)) except Exception as e: logging.error("An error occurred.", e) try: table_id = bqCreateTable(bq_client, dataset_id, table_name) logging.info("The following table {} was successfully created/retrieved.".format(table_name)) except Exception as e: logging.error("An error occurred.", e) for blob in lst_blobs: doc_title = blob.name.split('/')[-1].split('.txt')[0] # download as string it_raw_blob = storage_client.get_bucket(bucket_name).get_blob('raw_txt/{}.txt'.format(doc_title)) # set the GCS path path_blob_eng_raw = 'eng_txt/{}/{}_raw_txt_{}_en_translations.txt'.format(doc_title, bucket_name, doc_title) eng_raw_blob = storage_client.get_bucket(bucket_name).get_blob(path_blob_eng_raw) # Upload blob of interest curated_eng_blob = storage_client.get_bucket(bucket_name) \ .get_blob('curated_eng_txt/{}.txt'.format(doc_title)) # populate to BQ dataset exportItems2BQ(bq_client, dataset_id, table_id, doc_title, it_raw_blob, eng_raw_blob, curated_eng_blob) total_time = time.time() - start_time logging.info('The export to BigQuery was completed successfully and took {} minutes.'.format(round(total_time / 60, 1))) curated_gcs_source_prefix = 'curated_eng_txt' lst_curated_blobs = storage_client.list_blobs(bucket_or_name=bucket_name, prefix=curated_gcs_source_prefix) nlp = loadModel(model=en_core_sci_sm) start_time = time.time() for blob in lst_curated_blobs: doc_title = blob.name.split('/')[-1].split('.txt')[0] # download as string eng_string = blob.download_as_string().decode('utf-8') # convert to vector doc = nlp(eng_string) # Extract medical entities UMLS_tuis_entity = extractMedEntities(doc) # Generate dataframes entities = list(UMLS_tuis_entity.keys()) TUIs = list(UMLS_tuis_entity.values()) df_entities = pd.DataFrame(data={'entity': entities, 'TUIs': TUIs}) df_reference_TUIs = pd.read_csv('./utils/UMLS_tuis.csv') df_annotated_text_entities = pd.merge(df_entities, df_reference_TUIs, how='inner', on=['TUIs']) # Upload entities to datastore entities_dict = {} for idx in range(df_annotated_text_entities.shape[0]): category = df_annotated_text_entities.iloc[idx].values[2] med_entity = df_annotated_text_entities.iloc[idx].values[0] # Append to list of entities if the key,value pair already exist try: entities_dict[category].append(med_entity) except: entities_dict[category] = [] entities_dict[category].append(med_entity) # API call key = addTask(datastore_client, doc_title, entities_dict) logging.info('The upload of {} entities is done.'.format(doc_title)) total_time = time.time() - start_time logging.info( "The export to Datastore was completed successfully and took {} minutes.".format(round(total_time / 60, 1)))