from google.cloud import storage from google.oauth2 import service_account from covid19_ISMIR.utils.preprocessing_fcn import batch_translate_text, upload_blob import logging import re import time import os project_id = os.getenv('PROJECT_ID') bucket_name = os.getenv('BUCKET_NAME') location = os.getenv('LOCATION') key_path = os.getenv('SA_KEY_PATH') credentials = service_account.Credentials.from_service_account_file(key_path) storage_client = storage.Client(credentials=credentials, project_id=project_id) lst_json_blobs = storage_client.list_blobs(bucket_or_name=bucket_name, prefix='json') customize_stop_words = [ 'uoc', 'diagnostic', 'interventional', 'radiology', 'madonna', 'delle', 'grazie', 'hospital', 'Borgheresi', 'Agostini', 'Ottaviani', 'Floridi', 'Giovagnoni', 'di', 'specialization', 'Polytechnic', 'University', 'marche', 'ANCONA', 'Italy', 'Azienda', 'Ospedali', 'Riuniti', 'Yorrette', 'Matera', 'Michele', 'Nardella', 'Gerardo', 'Costanzo', 'Claudia', 'Lopez', 'st', 'a.', 'a', 'of', 's', 'cien', 'ze', 'diolog', 'ic', 'he', 'â', '€', 's', 'b', 'case', 'Cuoladi', 'l', 'c', 'ra', 'bergamo', 'patelli', 'est', 'asst', 'dr', 'Dianluigi', 'Svizzero', 'i', 'riccardo', 'Alessandro', 'Spinazzola', 'angelo', 'maggiore', 'p', 'r', 't', 'm', 'en', 't', 'o', 'd', 'e', 'n', 'd', 'o', 'g', 'h', 'u' ] start_time = time.time() for blob in lst_json_blobs: doc_title = blob.name.split('/')[-1].split('-')[0] txt_gcs_dest_path = 'gs://' + bucket_name + '/raw_txt/' + doc_title + '.txt' eng_txt_gcs_dest_path = 'gs://' + bucket_name + '/eng_txt/{}/'.format(doc_title) processed_eng_gcs_dest_path = 'gs://' + bucket_name + '/curated_eng_txt/' + doc_title + '.txt' # Translate raw text to english try: batch_translate_text(project_id=project_id, location=location, input_uri=txt_gcs_dest_path, output_uri=eng_txt_gcs_dest_path) logging.info("Translation of {} document was successful.".format(doc_title)) except Exception, e: logging.error("Error", e) # Process eng raw text blob_prefix = 'eng_txt/{}/{}_raw_txt_{}_en_translations.txt'.format(doc_title, bucket_name, doc_title) eng_blob = storage_client.get_bucket(bucket_name).get_blob(blob_prefix) eng_raw_string = eng_blob.download_as_string().decode('utf-8') # Remove dates # 1 or 2 digit number followed by back slash followed by 1 or 2 digit number ... pattern_dates = '(\d{1,2})/(\d{1,2})/(\d{4})' pattern_fig = 'Figure (\d{1,2})' pattern_image = '^Image .$' replace = '' eng_raw_string = re.sub(pattern_dates, replace, eng_raw_string) eng_raw_string = re.sub(pattern_fig, replace, eng_raw_string) eng_raw_string = re.sub(pattern_image, replace, eng_raw_string) # remove punctuation and special characters eng_raw_string = re.sub('[^A-Za-z0-9]+', ' ', eng_raw_string) # Remove custom stop words tokens = [token for token in eng_raw_string.split() if token not in customize_stop_words] refined_doc = '' for word in tokens: refined_doc += ' {}'.format(word) # Upload raw text to GCS upload_blob(refined_doc, processed_eng_gcs_dest_path) logging.info("The curation of {} text completed successfully.".format(doc_title)) total_time = time.time() - start_time logging.info('The translation and curation of all documents was successfully completed in {} minutes.'.format( round(total_time / 60, 1)))